Government as Network Catalyst

Travis Whetsell, Michael Siciliano, Michael Leiblein

Travis.whetsell@fiu.edu

March 2019

Acknowledgement: data in this paper were collected through National Science Foundation Grant #1133043
Research Questions

• What role can governments play in emerging patterns of cross-sector cooperation?
• How does government intervention influence network formation over time?

• Health - Policy Networks (Provan and Kenis 2008)
• Environment - Collaborative Governance (Ansell & Gash 2008)
• Energy - Network Governance (Klijn and Koppenjan 2015)
• Science & Technology – Research Collaboration (Katz, & Martin 2007; Wagner & Leydesdorff 2009)
Specific Case

• High-Tech Sector 1990-2000
 • Semi-Conductor Industry
 • Highly cooperative, pre-competitive R&D
 • Rapid increase in cooperation at end of 20th century
 • Global network structure
 • Government Intervention
 • Sematech Consortium, DOD/DARPA
 • ~10 years funding (87’-96’)
 • Provided Subsidy to 14 firms, Exclusion of foreign firms
 • Funding and Exclusion removed 96’
Literature

• Governance Networks
 • Public & Private Sector Theory

• Complexity Theory
 • Generic Properties of Networks

• Network Intervention
 • Modes of intervention
Governance Networks

• “stable patterns of social relations between mutually dependent actors, which cluster around policy problems, a policy programme, and/or a set of resources and which emerge, are sustained, and are changed through a series of interactions” - Klijn and Koppenjan (2015:11)
Private Sector Theory

• **Resource-Based View** (Eisenhardt & Schoonhoven 1996)
 • Firms enter alliances to access partner resources
 • Economic, Social, Human Capital; Knowledge, information, etc.

• **Transaction Cost Economics** (Oxley 1997)
 • Firms enter alliances to economize hazards of cooperation
 • Uncertainty, Opportunism
 • E.g. Frequency, asset specificity, hold up
Complexity Theory

“Complex systems are co-evolving multilayer networks”

-- Thurner, Klimek, and Hanel (2018)

• Numerosity & Interaction (Ladyman, Lambert, Wiesner 2013)

• Self-organization & Emergence (Miller & Page 2009)

• Fitness Landscapes & Catalytic Task Spaces (Kauffman 1993)
Complexity & Networks

“A substance which when present in small amounts increases the rate of a chemical reaction or process but which is chemically unchanged by the reaction; a catalytic agent. “ Catalyst -- (OED)

• Preferential Attachment (Newman 2001; Robins, Lewis, Wang 2010)
 • Mathew Effect – “rich get richer”
 • New nodes prefer to attach to nodes that are already well connected
 • Scale free pattern, Non-linear increase in link formation
Network Intervention

“the process of using social network data to accelerate behavior change or improve organizational performance”

— Valente (2012)

• Types of Intervention
 • Adding/Deleting Nodes
 • Adding/Deleting Links
 • Rewiring Existing Links
Hypothesis

• H1: The Semiconductor industry network exhibits preferential attachment, generically
• H2: Government intervention stimulated preferential attachment around a set of public policy relevant target firms, i.e. Sematech members
 • H2a: Strongest PrefAtt effect for Sematech expected during DOD-sponsorship period
Data, Variables, Methods

• IC Insights- Longitudinal data 1991-1998
 • Contractual R&D alliances: co-dev, cross-license, IP exchanges, joint-venture
 • Sematech: 8-16 members depending on year

• SIENA model (longitudinal network analysis)
 • Primary variables
 • H1:Popularity – Well-connected firms form more ties over time (preferential attachment).
 • Sematech – Sematech members compared to non-members form more new ties.
 • H2:Popularity*Sematech – Sematech stimulates preferential attachment?
 • Control variables
 • Transitivity, country main effects & homophily, firm size main effects & homophily, & Sematech homophily

• Time Period Sub-samples
 • Early 91-93, Maturity 93-95, Post-DOD phases 95-98
Results

- **H1: Popularity**
 - consistent preferential attachment effect
- **H2: Sematech Interaction**
 - stimulates preferential attachment in the early years
 - but has a second effect from 1993-1995
- **Controls**
 - Transitivity in 2nd and 3rd period
 - No country difference
 - larger firms tend to form more ties
 - Differences in firm size leads to higher likelihood of a tie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rate (period 1) rate</td>
<td>0.82***</td>
<td>1.31***</td>
<td>0.63***</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.13)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>rate (period 2) rate</td>
<td>0.95***</td>
<td>1.07***</td>
<td>1.24***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.09)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>rate (period 3) rate</td>
<td>0.75***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>degree (density)</td>
<td>-3.38***</td>
<td>-3.00***</td>
<td>-4.35***</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>transitive triads</td>
<td>0.14</td>
<td>0.61***</td>
<td>0.68***</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>H1: Popularity</td>
<td>0.07**</td>
<td>0.08***</td>
<td>0.08***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Country (USA)</td>
<td>-0.13</td>
<td>-0.17</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.12)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Country Homophily</td>
<td>-0.03</td>
<td>0.18</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Sematech</td>
<td>0.28</td>
<td>-0.78*</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.39)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>H2: Popularity by Sematech</td>
<td>0.22*</td>
<td>-0.36*</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.16)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Sematech Homophily</td>
<td>0.50</td>
<td>-0.24</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.34)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>Firm Size</td>
<td>0.36***</td>
<td>0.17*</td>
<td>0.18*</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Firm Size Homophily</td>
<td>-0.01</td>
<td>0.34***</td>
<td>0.49***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Iterations</td>
<td>3058</td>
<td>3060</td>
<td>3141</td>
</tr>
</tbody>
</table>

***p < 0.001, **p < 0.01, *p < 0.05
Discussion

• H1: Support for general PrefAtt effect
• H2: Mixed support for targeted (Sematech) PrefAtt effect
 • Time dependent PrefAtt effect
 • Detected initial PrefAtt affect
 • Reversed during maturity period
 • Post-DOD/period – No PrefAtt affect
• Target Firms benefit from initial intervention
 • But then focus on their established alliances, reduce new alliance formation
 • Consolidate local clusters into established alliance cliques
Future Research

Developing a *theory*: government-based network intervention

• As a catalyst for cooperative activity
 • For resource & knowledge recombination, for public ends

• What are the limits of intervention?
 • Are (PrefAtt-based) interventions more likely to succeed in incipient networks?
 • Less likely to succeed in established networks
 • Are there differential effects of focusing on small versus large firms?
 • Or combinations of small-large firms
 • Are there diminishing returns to cooperation?
 • Upper limit on cooperative behavior, cooperative capacity.
Thank You!